How about ANY FINITE SEQUENCE AT ALL?
You can’t prove that there isn’t one somewhere
You can, it’s literally the way the number is defined.
It’s implicitly defined here by its decimal form:
0.101001000100001000001 . . .
The definition of this number is that the number of 0s after each 1 is given by the total previous number of 1s in the sequence. That’s why it can’t contain 2 despite being infinite and non-repeating.
Pi is often defined as 3.141 592 653… Does that mean Pi does not contain any 7s or 8s?
That’s a decimal approximation of Pi with an ellipsis at the end to indicate its an approximation, not a definition. The way the ellipsis is used above is different. It’s being used to define a number via the decimal expansion by saying it’s an infinite sum of negative powers of 10 defined by the pattern before the ellipsis.
So we have:
0.101001000100001000001 . . . = 10^-1 + 10^-2 + 10^-3 + 10^-4 +10^-5+ . . .
Pi, however, is not defined this way. Pi can be defined as twice the solution of the integral from -1 to 1 of the square root of (1-x^2), a function defining a unit semi-circle.
Implicitly defining a number via it’s decimal form typically relies on their being a pattern to follow after the ellipsis. You can define a different number with twos in it, but if you put an ellipsis at the end you’re implying there’s a different pattern to follow for the rest of the decimal expansion, hence your number is not the same number as the one without twos in it.
Math kind of relies on assumptions, you really can’t get anywhere in math without an assumption at the beginning of your thought process.
Because you’d need to search through an infinite number of digits (unless you have access to the original formula)